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This problem arose in connection with the study of the Properties of 

helium II under rotating conditions. A disk under torsional oscillations 
about its axis is known to yield valuable experimental information about 

the properties of liquid helium [ 1,2 1. In this connection the correspond- 
ing hydrodynamic problem for a stationary fluid was solved [ 3 I. Latterly 
the oscillating disk method has been employed for studying helium in 

rotation [ 4,5,6 1 and it has revealed special features peculiar to a 
quantum fluid [ 7 1. These special features are due to the behavior of 
super-fluid components in helium II when, at the same time, the normal 

component of helium behaves like a normal liquid. When interpreting ex- 
perimental data it is essential to distinguish between the quantum 
effects of motion of super-fluid components and their interaction with 

the normal ones and the effects of classical motion of normal components. 
This is the reason why we study here the problem of torsional oscilla- 
tions of a disk about its own axis in a conventional rotating fluid. 

1. Formulation of the problem. Let an infinite incompressible 
fluid of density p rotate at constant angular velocity c+,. A circular disk 

of radius R and thickness h, the axis of which coincides with that of the 

rotating fluid, rotates with it, and on that motion, oscillations about 

the same axis at frequency fl are superposed. We can, therefore, express 

the disk motion in cylindrical coordinates as follows 

‘p = o,t + y,eiRf (l-1) 

We look for a solution of the hydrodynamic equations (Navier-Stokes 

equation and equation of continuity) in this foilli 

ur = u, (r, 2) eiaf, 21, = uq (r, zj eint -+ oar, u, = w, (2) einf (l-2) 
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p = pO + + po02r2 -i_ p1 (2) eint (1.3) 

Here pa is the constant pressure (pressure at axis with no oscilla- 

tion), In the Equations (1.2) and (1.3) terms containing functions u, w 

and p1 describe the perturbations of the well known solution to this 

system for the case of pure rotation, which arise as a result of the 

oscillations. 

Let us limit ourselves to the case of small amplitudes of oscillation 

and we will linearise the system of hyd~d~~ic equations as applied to 

the oscillation perturbations of velocity and pressure; 

(1.4) 

(1.5X 

Here X.J = q/p, the kinematic viscosity of the fluid, 

To find the functions u+ and ~lr we use Equations (1.4) and (1.5) 

which, when combined, yield 

2. Solution of the system, To solve the system (1;7) we use a 
method which was employed by Mariens and Van Paemel for solving the 

similar problem in a stationary fluid (8). Let us divide the space 

occupied by the fluid into three regions, as shown in Fig. 1 and we will 

study the motion in each of them separately. 

: 

,&..& 

Clearly &en h << R and with small depth of 

3: z penetration the most important region will 

be 3. Regions 1 and 2 are only incorporated 
____- in the discussion for approximate calcula- 

-- -- 
_-__ tion of corrections to the case of an in- 

finite disk. 
Fig. 1. 

(Owing to the symmetry of the 

problem, the regions symnetrical to 2 and 3 

are not studied separately). 

Region 1. (R\(r< 00, -"/Zh\<z\<1/2h.). (1) 

Assuming h to be small we can neglect change of velocity with z in 
this region. Then Equations (1.7) take the form 
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( d$+;;+k~2-$) (up& iu,) = 0, k: = -i F (2.f) 

In terms of formulas (l.1) and (1.2), the boundary conditions on the 

disk surfaces are of the form 

up (I?) = 0, 

At infinity we have 

With these boundary 

~~(1) (R) = iS+,;li, for - + h < z < f h (2.2) 

u,(l) (co) = u,(i) (oo) = 0 (2.3) 

conditions we arrive at the following expressions 

for the solution of equation (2.1) in terms of Hankel functions of the 

first kind of first order Hit2)(c); 

HI(l) (k-r) 

- HI(‘) (k-R) 1 
(2.4) 

where 

Im(k,) > 0 (25) 

Region 2. In this region (R < r < 00, t > l/2 h) we search for the 
solution in the following form 

u, + iu, = A (r)lo+(z), up - iu, = B (r) w_ (z) (2.6) 

where A(r) andB(r) satisfy bations (2.1) and conditions of type (2.3) 

for r = m. 

In other words a similar-radial fluid velocity distribution is pre- 

supposed in regions 1 and 2 and this permits solutions (1) and (2) to be 

joined over the surface where they meet. 'Ibe matching conditions, re- 

placing the absent boundary conditions of region 2 by boundary conditions 

on the disk surface, are of this form 

urt2’ (r , f h) = u,(l)(r), ~$2) (r, $ h) = ~~(1) (r) for P > R (2.7) 

Bearing in mind also conditions at infinity 

UP) (r, 00) = u,(Z) (r, 00) = 0 (2.8) 

and, condition (2.5), we arrive at 
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(2.9) 

Q’pO R ’ HI(l) (k+r) 
up) (r, z)= - 7 { 

HI(l) (k+R) 
““p[ik,(z--)]-~::):kk__~j cq[ik_(z-$)]I 

Szcp,, R 
~~(2) (P, 2) = i 2 

HI(‘) (k+F) 

HI(l) (k+R) 
exp[ik+(z - s)] + zl’,fzI exp [ik(z - i)]] 

Region 3. (r < R, z ‘> l/2 h). T o make an approximate estimate of the 

edge effects on the velocity distribution in this region we use the 

following method. We analyse the effect of viscous forces on a cylindri- 
cal column of fluid over the disk. For any element of this column at 

height z and of thickness dz, the moment equation takes the following 

form 

R’ 
KPT 

I, 

i 

av (2) 
-I 2qR=dz + 

Assuming that in region 3 the u functions are of the form 

u. (r, 2) = rub (z), ur (r, 2) = rw- (4 

and, transforming the moment equation, after linearising 

wT and w+, we get: 

d2 WV 4)) 

XL>, + 2w0w, = v .dz2 + RT 
i 

Q’ 
-_ ar 

r r-R 

with respect to 

Now combine this equation with (1.4), and we arrive at the 
equations of the Meyer type (cf (8)). 

The solution of these heterogeneous equations with boundary conditions 

q.(3) r, $ = 0, 
( > 

~~(3) r, S = iQy,r, 
( ! 

u,(3) (r, co)= uqt3) (r, oa) = 

has this form 

Eollowing 

(2.1(A) 

0 (2.1’1) 

in which 
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(2.13) 

It should be noted that expression (2.12) for C, = 0 is in fact sn 

exact solution of system (1.4)-(1.6) for oscillations of an infinite disk 

in an infinite rotating fluid. 'Ihe expressions within the square brackets 

represent approximately calculated corrections (for) edge effects. 

It is easy to see that with z = l/2 h, zzy)(R, z) transforms to 

~~)(~, 2). 

In view of the fact that it is our intention to work out the moment of 

the viscous forces acting on the disk surface, the absence of continuity 

of our approximate solution in regions which are a long way from the sur- 

face is not really important. In view of this too, we will not write down 

expressions for the other unknown functions ur, wz and p1 which do not 

enter the moment expression. 

3. Calculation of moment of viscous forces and comparison 
with experimental results. 'Se moment of forces acting on the edge 
and face surfaces of a disk are determined by the following formulas: 

I r=R ’ 

0 

from which 

n/r = J/p) ,_ J/p) = xQ:R4 k++k_+ 2 ;++k'- -i_ 
f - ,5 

+$ +&--2ih(C, 

Gtnsistent with conditions (2.5) the second formula (2.1) yields 

k+ = -$(I -i), 
f 

(3.2) 

k_=+-(Tf+i) (3.3) 

The upper sign in the second formula corresponds to the case Cl > 2 oO 

and the lower, to the case Cl< 2 w,,. The depth of penetration A+ and A_, 

corresponding to the two possible relative directions of rotation and 

oscillation, will be given by 

If the following conditions are satisfied 

(3.4) 
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A, <R, h<R (3.5) 

expression (3.2) can be simplified using an asymptotic expansion of a 
Hankel function of large arguments. 
manner m = (IV/+,)~+~ ’ t . 

The expression obtained in this 
IS inserted into the known formulas 

where Q2,, S, and fl, 6 are the frequency, and logarithmic decrement of 
oscillation in vacuum and in the fluid respectively and I is the moment 
of inertia of the disk. It is assumed that damping is weak 

For the case 51 > 2 o,, we have 

21 (Qj- 522) = qR4 Q ($ + &) (1+ g) 

21Q (6 -A,,$) = rc2yR4 (k $ 

(3.8) 

&)(l-t~i-&&g (3.9) , 
The latter formula transforms to the familiar one for a fluid at rest 

incorporating the Landau correction for the case o,, = 0 [2,3,8 I. 

For the case Q< 2 or, formula (3.9) 
remains valid, and instead of (3.8) we 

have 
*I. 

(3.10) 

21 (fio2 - fi2) = rrq R4i2 (h'r - h'_) (I+$) 

Formula (3.9) has been confirmed ex- 
perimentally by D.S. Tsakadze and K.B. 
Mesoyed, when studying the oscillations 
of a “heavy” disk (0 = 62 0) in distilled 
water. 

In Fig. 2 we can see complete agree- 
ment between formula (3.9) (full lines) 
and experiment. In the same graph we 
give results of calculation (broken 
line) without allowing for the correc- 
tion 

2h 4 A,h_ 
I + R + R A, -j- A_ 

80 

Fig. 2. 

The authors are indebted to Andronikashvili and their associates at 
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the cryogenic laboratory of the Tbilisi University for their inspiration. 
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